A role for 9-lipoxygenases in maize defense against insect herbivory
نویسندگان
چکیده
Feeding by Spodoptera exigua (beet armyworm) larvae on Zea mays (maize) induces expression of 9-lipoxygenases to a greater extent than 13-lipoxygenases. Whereas 13-lipoxygenases have an established role in the synthesis of jasmonates that serve as defense signaling molecules in many plant species, relatively little is known about the role of 9-lipoxygenases in herbivore defense. Phylogenetic analysis of lipoxygenases from maize inbred lines B73 and W22 shows that, although most Lox genes are present in both lines, Lox12, a 9-lipoxygenase that has been implicated in fungal defense, is truncated and unlikely to encode a functional protein in W22. Two independent Mutator transposon insertions in another 9-lipoxygenase, Lox4, caused improved S. exigua growth on the mutant lines relative to wildtype W22. This observation suggests a function in herbivore defense for metabolic products downstream of maize Lox4, either through direct toxicity or a perhaps an as yet unknown signaling function.
منابع مشابه
Ethylene signaling mediates a maize defense response to insect herbivory.
The signaling pathways that enable plants to mount defenses against insect herbivores are known to be complex. It was previously demonstrated that the insect-resistant maize (Zea mays L.) genotype Mp708 accumulates a unique defense cysteine proteinase, Mirl-CP, in response to caterpillar feeding. In this study, the role of ethylene in insect defense in Mp708 and an insect-susceptible line Tx601...
متن کاملEthylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid.
Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea ...
متن کاملIntraplant communication in maize contributes to defense against insects.
The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Furthermore, accumulation of Mir1-CP in the vasculature suggests that Mir1-CP can potentially functi...
متن کاملA maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene
Maize (Zea mays) emits volatile terpenes in response to insect feeding and egg deposition to defend itself against harmful pests. However, maize cultivars differ strongly in their ability to produce the defense signal. To further understand the agroecological role and underlying genetic mechanisms for variation in terpene emission among maize cultivars, we studied the production of an important...
متن کاملSynthesis and Functions of Jasmonates in Maize
Of the over 600 oxylipins present in all plants, the phytohormone jasmonic acid (JA) remains the best understood in terms of its biosynthesis, function and signaling. Much like their eicosanoid analogues in mammalian system, evidence is growing for the role of the other oxylipins in diverse physiological processes. JA serves as the model plant oxylipin species and regulates defense and developm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018